Towards Cost Effective On-Line Laboratories

James Trevelyan
Associate Professor, Department of Mechanical and Materials Engineering, The University of Western Australia,
35 Stirling Highway, Crawley, Western Austrlaia 6009. E-mail: james.trevelyan@uwa.edu.au

Summary

Our aim is to develop the means to provide staff and
students with remote access to laboratory equipment
using the internet.

The idea that students can operate laboratory equipment
remotely to allow flexibility in learning styles is not
new. However, there are few instances of this reported,
possibly because implemeting such schemes is often
expensive and complex.

Our aim is to provide this facility in a cost-effective
manner. We have made substantial progress towards
our aims. We have demonstrated that LabView
provides a useful software environment with a wide
range of hardware connectivity, multiple platform
support, with the ability to support distributed
application software over the internet. Our experience
in building web-operated telerobots since 1994 has
provided us with useful models for designing the
software to enable collaboration between users. The
server and backbone of the software has been designed
to provide a rugged, maintainable framework. This
allows students to build software modules needed to add
specific laboratory experiments to the system. By
following templates and simple design rules they can
produce easily maintainable software. The hardware
can easily be maintained by our technicians.

Introduction

Our first project of this kind was a telerobot. (Taylor &
Trevelyan 1995, Dalton 2000). However this
(eventually) required a huge investment in special
purpose software written in C, C++ and Java mainly by
graduate students working on the project and the
software is essentially non-maintainable. Much of the
underlying C and C++ code is tied to the hardware we
are using - the PC's, frame-grabbers, cameras and robot
interface hardware. This problem (i.e. high life cycle
and maintenance costs) seems to have affected other on-
line web-controlled equipment projects.

In this project we would like to finish with an affordable
and maintainable system. At the same time, we want
students to gain practical experience by building parts of
the system. This means a careful compromise that
allows students design freedom while keeping to design
rules that build in reliability and long-term

maintainability. If we have a system that can be
maintained for the full life cycle and gradually extended
within the normal operating budget, then we would
consider it cost-effective.

What are the maintenance resources? For hardware we
rely on in-house laboratory and workshop technicians.
Although they are highly skilled, we still want to
minimize the proportion of their time spent on
maintenance. We also have students, but with
decreasing staff time resources, the level of practical
skills they can develop in the short times they are with
us is limited.

For this reason we have chosen to minimize special
purpose hardware and software investment by building
our system around LabView software and National
Instruments hardware. LabView software seems to be
readily understood by engineering students, at least to
the point where they can make useful changes and
enhancements. The hardware elements can easily be
handled by our technicians.

We used Java in the telerobot project to provide a good
base for internet functionality and standardization across
different computer hardware and operating systems.
Unfortunately, the degree of standardization is not as
good as we would like: the telerobot project taught us
that complex Java applications and applets particularly
(running in browsers) do not provide long term
performance reliability: crashes and mysterious side
effects are commonly reported by users. LabView
seems to provide a more robust base for cross-platform
support than Java (supports all major hardware
platforms and operating systems). By building the
system in LabView it is less likely that software
changes would be needed after replacing computer or
interface equipment, or after operating system upgrades.

At first it might seem unnecessary to build special
purpose software. LabView provides all the basic
facilities required to implement online laboratories:
internet communications, hardware connectivity, web
serving technology and easy construction of user
interfaces. Access to an experiment for a single user at
a time is easy to implement and there are several
worked examples available.

Laboratory experiments in mechanical engineering
often require substantial time periods: equipment can
take several minutes to reach stable running conditions.
Given the need to provide facilities for large classes an

effective online laboratory system must provide
effective queue management and timetabling. Students
are not good at managing their time: they usually leave
their work to last possible moment. For this reason,
timetabling is important for laboratory work. At the
same time, students are not good at turning up at the
right moment, particularly after normal working hours.
Therefore, we have provided a combination of queueing
and timetabling to regulate student access. We expect it
will require considerable fine tuning.

Students need to be able to collaborate in many
laboratory classes. We have designed our system to
allow collaboration between groups of students working
at the same time in different locations. When one
student moves the controls all the other students see the
controls on the own panels move at the same time and
the name of the student moving the controls is displayed
all the others. This arrangement also allows staff and
students to use the system at the same time so that the
staff can provide remote assistance. A chat window
allows text communication between all simultaneous
users. Another chat window allows communication
between students waiting in the queue.

A robust system must allow for connection failures
particularly as students use older computers and may
not be able to afford high-quality internet connections.
The system must be able to restore broken connections
without interrupting experiments. Needless to say a
student will not be able to control the equipment while
his or her connection is broken but many experiments
can continue and results can be recorded. The system
then waits until the student re-connects. Results are
sent by E-mail even if the student fails to reconnect.

The system must record actions of students to allow for
the development of automatic assessment. We have
learned that partial use of automatic assessment relieves
staff from many routine assessment tasks to allow them
to spend more time with students.

The system ensures that students have downloaded the
correct versions of the laboratory control software: if
they do not have the correct versions it is downloaded
for the while they are waiting in the queue. If the
queueing time is long students can disconnect and rejoin
the queue closer to the time when they are likely to gain
access. The system is capable of sending a text message
to mobile telephones when students are about to get
access to the experiments.

Experience with Online
Laboratories
From the first months of operation, our telerobot

(Taylor & Trevelyan 1995) was used from time to time,
on request, as a device to help with courses on robotics.

One of the earliest examples of a purpose designed
laboratory experiment system on the web was described
by Henry (1996a, 1996b). Salzmann et al (2000) and
Gillet et al (2000) describe an internet-accessible DC
servo device and how it can be used to help with student
learning. Shen et al (1999) and del Alamo (2001)
describe similar arrangements in which students can
remotely test semi-conductor devices in web-enabled
experiments. A further similar arrangement is being
developed in Norway (Fjeldy and Jeppson 2001).
Ferguson (1997, 2001) and Lemckert (2001) are
working specifically on distance learning applications of
this technology. Qanser (2001) offers commercial
software and hardware for web-enabled control system
laboratory experiments.

What has been learned from these pioneering efforts?
First, while several web sites are still in operation, few
show signs of recent developments. There was a surge
of interest between 1994 and 1999, and the pace of
development has slowed since then. The telerobot site
is the only one of these to have continuously operated
throughout this period. The UTC web lab (Henry
(19964a) has operated since 1996 but little has changed
recently. Operating and maintenance costs have been
significant: special purpose hardware-related software
has been a major impediment to the maintenance of
several projects. Maintaining software capabilities
through significant operating system, computer
hardware and user software upgrades has taken
significant resources and is cited as an issue of concern
by most authors.

The relatively small number of working systems and the
slow rate at which this technology is progressing
suggest that there are some major problems still to be
overcome. The problems appear in the form of high
installation, operation and maintenance costs. Some of
the underlying causes are:

a) Cost of maintaining the system to keep up with
hardware, operating system, internet service
provider and browser technology changes.

b) Complexity of technological components and of
integrating a working system

c) Lack of administrative support for large classes
d) Need to deal with unreliable internet connections

e) Need for collaborating users to be able to work
together

In this work we aim to provide facilities for the efficient
management of large classes, queuing and timetabling
of laboratory users, collaboration between simultaneous
users at different locations and measures to deal with
unreliable network connections. The experience of the

telerobot project (Dalton 2001) has contributed a
reliable system design that can meet these requirements.

Initial Investigations

We started in February 2000 with a survey of alternative
technologies. To reduce hardware maintenance costs
we focused on solutions that involve standard process
control and automation hardware, particularly different
types of fieldbus technologies. On the software side, we
needed solutions that would allow us to purchase
upgrades to support new hardware: we could not always
rely on particular interface hardware being available.

By July we chose to base our system on National
Instruments hardware and LabView software, and we
have continued to be impressed by the technical
capabilities of LabView, particularly multi-platform
support of internet communications. Our computer
science students working on the software initially were
expecting to build most of the system in Java but, so far,
have not written any Java at all.

By the start of December 2000 when several students
joined the project for the summer vacation, we had
design studies completed for a series of initial
laboratory demonstrations:

Torsional vibration experiment designed by a
student some years before. A motor excites
torsional vibrations in two discs connected by
springs. The experiment supports advanced
undergraduate coursework in vibration isolation
and suppression techniques.

Domestic electric iron instrumented with
temperature sensors. This demonstrates that even
the simplest feedback control devices show some
interesting complications. The experiment supports
introductory courses on feedback control and
mechatronics.

Sand weighing machine demonstrating automatic
bulk materials handling: a machine that deposits a
weighed sample of sand into a bag or hopper. This
provides a challenging automation programming

exercise for an introductory mechatronics course,
and introduces students to standard industrial
hardware. The machine has been used for 20 years,
but the hardware needed a major upgrade to be
ready for unattended remote operation in which the
control software would not function correctly for
much of the time.

By the end of February 2001 the vibration experiment
was ready to use and the hardware for the electric iron
and the sand weighing machine was essentially
complete. On the software side, we had demonstrated
all the elements required for the complete system,
including a multi-user client-server software module to
serve as a skeleton for future developments.

Students can log in to a laboratory server: of the
equipment is available they gain immediate access
to an operation control panel and limited bandwidth
video picture. The video is provided by
NetMeeting or compatible video-conferencing
software. If the equipment is already in use they
can they wait in a queue until the equipment is
ready. They can "chat" with other students in the
gueue, or practise using the controls using data
from modules that simulate the equipment they will
use later.

If necessary, we can arrange for different shared
control schemes. As in the telerobot, control can be
passed from one user to another. Alternatively, we
can also support joint control: all users with
appropriate access rights can move the controls: the
system will move the corresponding controls on all
other user's control panels and report the name of
the user who has just altered the settings.

The control actions and data resulting from the
experiment can be recorded for later retrieval by the
student if his own computer loses its connection or
crashes.

Access for students can be based on class
enrolment lists, and students can join groups of
limited size to collaborate on problems.

Remote User's Computer

| Na!Mea!ingI

m =
L -~

-~

port 1718-1720, H.323
<&

>
port 3015

Remate User's Computer
pab sfeLe. p port 4446

I

lH e
=,

Telelab Server

: s
:
o Jo

Remcte User's Computer|

4

>

Video camera

FieldPoint
data transfers on local ethernet

k.

Rig electronics and

FieldPoint /0 Modules

power unit

Figure 1. Telelabs software: multiple users, multiple labs. This diagram shows connections needed for a remote
user to operate the equipment on the right, seeing the movements of the machine with NetMeeting. Both pieces of
equipment can also be operated by students in the laboratory using the (identical) remote client that is installed in
the lab PC to provide control settings and monitor the equipment. Note that the MoM server is referred to as LOL

in the text.

Students' actions can be recorded for later analysis
to support assessment by supervising staff. The
data is kept in secure format and is only accessible
by teaching staff.

Two students developed all the software in about 4
weeks following an initial familiarization phase of about
5-6 weeks. Fortunately, there are many worked
examples provided with LabView and in related
publications that students could adapt for their needs.

Of course, while the elements have been demonstrated
they still need to be integrated into a complete working
system. The lab server software, for example, only
supported one experiment.

Engineering the Server and
Software Framework
The server and framework software for the system has

been engineered professionally because it has to be very
reliable.

There are three components of the framework: the Labs
On Line (LOL) Server, the Remote User Client (RC),

and the local Hardware Client (HC) that manages
experiment hardware. The LOL server handles the
communications between RC’s and HC’s as well as
providing all the database functionality (authentication,
enrolment details, etc). The RC’s and HC’s connect
using a standard client module that handles the
connection with the LOL server. (Figure 1, figure 2
shows alternative hardware arrangement).

The telerobot project showed that cooperative tele-
operation can be conveniently implemented using a
"message-oriented-middleware™" (Mom) server (Dalton
2001). The server handles connections to users (or
peers), authentication of users, and provides access for
users to other services (such as lab hardware). Although
there is a slight overhead in doing this, there is
enormous simplification in design because the HC’s
need only communicate with the Mom server. The
Mom server in the telelabs project is designated as the
Labs On Line or LOL server.

The LOL server contains the following important
elements:

1) A finite state monitor that keeps track of user states
(figure 3 — last page).

2) A user database handler that supports
authentication, and also allows users to update their
details on-line.

3) A central data-logging process that retains
experimental results and control settings for users.
Users can retrieve data for a given time period after
using the system.

4) A logging process that records what students do to
provide information for the lecturers and provide
feedback on student performance.

5) A logging process that records what the Mom
server does to help diagnose faults and performance
problems.

6) A time-tabling process that allows students to
reserve times to operate the equipment

When student logs in and has received authentication, a
“hallway” application is launched. From the hallway
the user can chat, ask for help and examine rooms to see
what the queues for experiments are like. The queue
information will contain the approximate time until an
experiment becomes free. Once in a queue the student
can practice with a simulation of an experiment while
waiting.

Assessment and Learning
Effectiveness

Our earlier work on internet learning systems has shown
that the greatest benefits come from automating at least
part of the unit assessment so staff can spend more time
with students while they are doing the exercises. This
might sound contradictory: why build a system that
allows students to work at home if the aim is to allow
them to work with staff?

We see the time that the students operate the lab
equipment remotely as only part of the learning
experience.

Students will be introduced to the exercise either in a
lecture or a small group class lasting about 30 minutes
with a lab demonstrator. Some of the equipment is
being engineered for mobility: it can be wheeled into a
class and operated in front of the students. Other
equipment will be fixed: students can be introduced in
small groups of 10 - 12 students each. We know from
our previous experience with the telerobot that most
students will benefit from first-hand contact as early as
possible in their work.

A typical exercise will involve theoretical modelling
and simulation studies coupled with experiments on the
lab hardware. Staff interaction is likely to be more
beneficial during the modelling and simulation work.
We expect this to be interspersed with experiments to

gather data over a period of 2 -3 weeks, rather that the
more traditional laboratory format where a group of
students comes to the lab for a fixed three hour session
in which they have to understand the equipment,
conduct the measurements and record the data.

The final assessment could be based on reports,
interaction with the staff during the modelling phase
and even an oral examination in front of the equipment
in small groups.

Underlying all of this is the notion of transfer
effectiveness (TE) - a term derived from pilot training
using aircraft simulators. TE is a measure of the extra
time needed in a simulated aircraft to provide the same
training effect as a given number of hours in a real
aircraft. In our case, we have three learning modes:
simulation and modelling, remote operation and hands-
on operation. We hope to work towards effective
combinations of all three to provide more effective
learning than traditional laboratory classes. It will be
some time before we can gather data under controlled
conditions to assess whether this has been achieved.

We will explore different models of assessment and
different learning scenarios to gradually improve
learning effectiveness. Given the significant reductions
in staff resources for university teaching in recent years
(more than 25% between 1995 and 2000) this is a
matter of considerable urgency.

Collaboration

A student from the Australian National University
helped with the first prototype of client-server software,
and is continuing to develop this in Canberra where
there is a vibration laboratory similar in principle to the
torsion vibration machine at UWA. Several universities
have expressed interest in working with us. However,
we plan to have a complete multi-laboratory system
running before broadening the project to other
universities.

Concluding Remarks

This project is experimental and the system described
here will only be implemented fully in 2002. While we
are confident that it is technically feasible, it will be
some time before we can collect data so we can know
whether our considerable investment has been
rewarded. It has taken us 6 years of experience with our
on-line learning systems for analytical courses to begin
to assess overall cost-effectiveness. We expect our on-
line laboratory courses will take at least this time before
we can be confident that our costs are comparable with
alternative ways to present laboratory courses.

Acknowledgements

This is a research and development project supported by
the Faculty of Engineering and Mathematical Sciences
Faculty Initiatives Fund. The author would like to
thank his colleagues and his students for their support,
particularly Jan Baranski who engineered much of the
hardware system, Alex Le Dain of ICON Technologies
who engineered the core of the software system in
LabView, Sabbia Tilli, Harjono, Flavio Bruni, Peter
Dalla Riva, Colin Leung, and Jamie Lee, and Barney
Dalton for his work on telerobot software that led to this
development. Thanks are also due to reviewers who
made valuable comments on the draft.

References

Dalton, B. (2001) Techniques for Web Telerobotics,
PhD Thesis, The University of Western Australia (to be
published in 2001).

Dalton, B. and Taylor, K. (2000) Distributed robotics
over the internet. IEEE Robotics and Automation
Magazine, Vol 7:2, pp 22-27. See
http://telerobot.mech.uwa.edu.au/.

del Alamo, J.,Brooks, L., McClean, C.,Hardison, J.,
Mishuris, G.,Chang, V., and Hui, L. (2001) A web-
enabled remote laboratory for microelectronic device
characterization, Personal Communication (draft paper).
Also see http://weblab.mit.edu/.

Ertugrul, N. (2000) Towards virtual laboratories: a
survey of LabView-based teaching/learning tools and
future trends. Int. Journal of Engineering Education,
16:3.

Ferguson, C. (1997) Remote access to computer-
controlled manufacturing facilities for engineering
students, World Manufacturing Congress, Auckland,
New Zealand. On-going project at:
http://www.et.deakin.edu.au/research/Eng_Education/in
ternet.htm.

Fjeldy, T., and Jeppson, K. (2001) Internet technology
in laboratory modules for distance learning. See
http://www.unik.no/~torfj/remotelab.htm.

Gillet, D., Salzmann, C., and Gorrochategui, E. (2000)
Remote manipulation with LabView for educational
purposes. in Travis (2000).

Henry, J. (1996a) Controls laboratory teaching via the
World Wide Web. ASEE Annual Conference, Session
3513, available from National Instruments Academic
Resources CD-ROM 2001 Edition. See also http://
http://chem.engr.utc.edu/.

Henry, J. (1996b) Running laboratory experiments via
the World Wide Web. ASEE Annual Conference,
Session 3513, available from National Instruments
Academic Resources CD-ROM 2001 Edition.

Lemckert, C., Fergusen, C. (2001) Remotely operated
laboratory experiments in engineering for distance
education students. On-going project at:
http://www.et.deakin.edu.au/research/Eng_Education/fl
ow.htm.

Quanser (2001). Company web site at
http://www.quanser.com/.

Salzmann, Ch., Gillet, D., and Huguenin, P. (2000)
Introduction to real-time control using LabView with an
application to distance learning. Int. Journal of
Engineering Education, 16:3. See also
http://iawww.epfl.ch/Staff/Christophe.Salzmann/MS_H
TML/ChMS.html.

Shah, F. and Travis, J. (2000) Using Java applets to
control DC servo dynamometer system remotely. In
Travis (2000).

Shen, H., Xu, Z., Dalager, B., Kristiansen, V., Stram,
@., Shur, M., Fjeldly, T., L0 J.-Q, Ytterdal, T. (1999)
Conducting laboratory experiments over the internet,
IEEE Trans. on Education, August, 1999. See
http://nina.ecse.rpi.edu/shur/remote/.

Taylor, K. and Trevelyan, J. P. (1995) Australia’s
telerobot on the web. 26" Symposium on Industrial
Robotics, Singapore, October 1995, pp 39-44. See
http://telerobot.mech.uwa.edu.au/.

Travis, J. (2000) Internet Applications in LabView,
Prentice Hall, New Jersey USA, 600 pp.

Remete Uzer's Computer|

‘ NeﬂMeal'ng\

port 1718-1720, H.323

=

Femow® contrd of
e iment

ort 3015 DataSock_etk
»

port 4448
control

Rgmote User's Computer

! Teldlab Server Laibs status,
Logh,
Queue gatus

DataSocket

Video camera

HHE

Local high
apeed AD
and D/A

Rig electronics and
power unit

Figure 2. An alternative hardware arrangement that can also be used in our system. In this configuration, the equipment
requires high speed local control by a dedicated computer that also contains the remote client. The central server only
relays control information, and related data socket transfers. It is also possible that a second data socket server could be
located on the control computer to handle higher traffic volumes entirely related to the hardware for this particular rig.
The system provides for considerable freedom in configuration in order to reduce potential network traffic congestion.

Wait_queued

L)

voluntary
disconnsct

connected,

Wait_disconnected(1,2)

member of

same group as
current operator(s)

()

=send reminder....E-mail
or SMS message

O
<20 mins to estimated front of queus
start of session and lab is fres
T
connected staff user and
wants to operate

Wait_for_reconnect

front of queus and
lab is free

Operate_wait_for_
reconnect

L L)

=2 mins connected

v

C Operating_disconnected

Notes

1. Timetabled users: when tmencw > scheduled
time + eatimated queue waiting time, add to queue
in "wait_disconnected" state (if not already in
systemn). Timetabled users have priority over
queusd users after their reserved time commences.

2. Users can disconnect while queued. Can send
E-mail or M5 mezzage to remind them when
there iz an estimated 20 minutes left to go.

3. See separate cperating states for transferring
control between users.

4. Total operating time includes periods of
accidental disconnection. When jumping from
wait_gueued state to operating because of being
member of operating group, user acquires
operating time accrued by group. There fore, the
longest operating time is determined from the
moment the first member of the group becomes an
operator. Time limit is fixed by lab supervisor, but
student users can neminats a shorter time limit.
Guest users may be allocated a shorter time limit.

=3 mins and
only operator

disconnected connected

No_show

()

shift to end of queus

C Operating (3)

‘connected 22 hours

voluntary
disconnect

total operating
time=limit (4)

Remiove user
from queus

User data needed: Remove user
from queus
State (enum)

Time in current state (u32)

Total waiting time (u32)

Operating state (boolean)

Time limit (u32)

Connected (boclean)

Timetabled user (boolean)

Reserved time (u32)

Address for remindsr

(string)

To be removed (boclean)

Operating_time_exceeded

X
/

voluntary =5 mins
disconnect

Remove user Remove user

from queue framqueue

Figure 3. This state diagram shows how users are first queued, and then later come to operate hardware. Users can
disconnect (either deliberately or accidentally) and reconnect later without losing their place in the queue. Again, users
can be (accidentally) disconnected while they are operating the equipment. If they manage to reconnect within 3
minutes (or within 5 minutes if there are other students connected in the same lab group), they will be able to continue
their work without having to wait for other users in the queue. This design accommodates experiments that take time to
complete. Very short experiments will use the same system, and accidental disconnection is unlikely to occur.

